化学平衡的移动
来源:http://www.ewt360.com 发布于 2008-11-04 已有 人阅读
平衡移动原理阐明了浓度、压强、温度对平衡移动的影响。在恒温条件下改变浓度、压强,平衡可能发生移动,但平衡常数不变;改变温度,平衡常数有相应改变。
(1)浓度、压强对平衡移动的影响
恒温下,改变反应物或(和)生成物的浓度,均能导致平衡移动。对于有气态物质参与的反应,在恒温、恒容条件下,气态反应物或(和)生成物浓度的改变,就是相应各气态物质压强的改变,平衡将发生相应移动。
若在恒温条件下,改变有气态物质参与反应的总压强,则气态反应物、生成物的浓度或分压将以同等倍数增大或减小,对于气态反应物和生成物物质的量不同的反应,平衡将发生移动。
我们以N2+3H2=2NH3为例讨论如下。
① 恒温、恒容下加N2(改变浓度),平衡向正反应方向移动的结果是:
c2(N2)>c1(N2),c2(H2)<c1(H2),c2(NH3)>c1(NH3)。
H2转化率增大与c(NH3)增大是一致的,但N2的转化率却下降了。
恒温、恒容下加H2,平衡发生移动,c(NH3)增大和N2转化率增大一致,但H2的转化率下降。
结论是:恒温、恒容下增大一种反应物浓度,可提高其他反应物的转化率,而增大了浓度的反应物本身的转化率下降。或者说,恒温、恒容条件下改变一种反应物的浓度,不可能出现所有反应物(若不止一种)转化率都升高或下降的情况。
② 恒温下加大总压,如使p→2p。在加压瞬间,N2、H2、NH3的浓度或分压强都增大1倍,平衡将向正反应方向移动。若和2c1相比,N2、H2浓度或分压强减小,NH3增大。即c3(NH3)>2c1(NH3),2c1(N2)>c3(N2)>c1(N2),H2同N2。
平衡移动结果若和原先c1相比,N2、H2、NH3浓度都增大了,只是NH3浓度或分压强增大更多。即N2、H2转化率都增大了。
③ 恒温减压,如使p→p/2。在减压瞬间,N2、H2、NH3的浓度或分压强都减半,平衡向逆反应方向移动。与c1/2相比,N2、H2浓度均增大,NH3浓度减小。即c4(N2)>c1(N2)/2(H2同N2),c4(NH3)<c1(NH3)/2。若平衡移动结果与原先c1比,N2、H2、NH3浓度都减小,只是NH3减小更甚。
恒温时,对以上三种平衡移动讨论的区别是:(1)恒容,而(2)、(3)不是恒容。前者,若有A、B两种反应物,增大A的浓度或分压,可提高B的转化率,A的转化率却下降。后者平衡移动的结果是:气态反应物、生成物的浓度或分压都增大或下降,只是反应物或生成物浓度或分压强改变更为显著(对于气态反应物物质的量和生成物物质的量不同的反应)。
这个结论具有普遍性。
(2)温度对化学平衡的影响
化学反应的热效应取决于正、逆反应活化能的差值。若正反应活化能更大,则正向反应为吸热过程。热效应和反应温度、反应速率间没有直接关系。例如,
KClO4 == KCl+2O2 =-4.1 kJ/mol,约510 ℃分解
KClO3 == KCl+3/2O2 =-45 kJ/mol,约380 ℃分解
① 改变温度对热效应(吸收或释放)大的反应的影响大。
k1、k2分别是在T1、T2下的平衡常数, 为反应焓变,R为摩尔气体常数。
下列两表分别列出几个反应在不同温度下的平衡常数:
分析上表数据可得到两个结论:
a. 反应焓变大的反应,K值随温度改变时的变化大。
b. 对于某个具体反应,低温下改变温度对平衡常数的影响更大。
②反应焓变和反应的关系
实际情况是,发生化学反应(含平衡移动)必伴随焓变,因此反应体系温度必有改变,只是改变量不同。下面讨论3个典型实例。
a. 4NH3+5O2 == 4NO+6H2O =-907 kJ/mol 反应释放大量热,在NH3和O2的物质的量之比适当时,催化剂Pt-Rh网的温度(Pt-Rh网处于红热状态)由反应释出的热维持。
4FeS2+11O2 == 2Fe2O3+8SO2 =-3 411 kJ/mol焙烧FeS2时,反应释放的热量维持焙烧炉的高温(若FeS2矿石中S的质量分数低于35%,反应释放的热量不足以维持焙烧炉温度)。
铝热法也是借反应释放的热量使还原反应持续进行的。
b. 释放中等程度热量的反应SO2+1/2O2 == SO3 =-99 kJ/mol
在接触室中SO2转化为SO3时释放的热量使体系温度升高,因此气体需经热交换适度冷却后,再次进入接触室。如含7%(体积分数,下同)SO2和11% O2的原料气在450 ℃进入第一段接触室,约70% SO2被氧化,温度上升到约600 ℃;经热交换器温度降到约450 ℃,进入第二段接触室,SO2转化总量达94%,温度升高达480 ℃。多段接触,转化可缩短1/3或更多的反应时间(和一段接触转化所需时间相比)。
原料气中SO2为7%、O2为11%的有关数据列于下表:
N2+3H2 == 2NH3 =-92.4 kJ/mol反应释放的热量不算很小,因转化率不大,流出气体中含14%~18%(体积分数)NH3,所以释放的热量也不多。加上14%~18%NH3已接近平衡浓度,所以合成氨只进行一次 (而不像SO2需经二段)转化。
c. 生成水煤气是吸热反应C+H2O(g) == CO+H2 =131.5 kJ/mol, 所以需要补充热量。实际生产过程是:通空气燃烧煤,使煤层温度升高,而后通水蒸气生成水煤气,煤层温度下降,待下降到一定温度后,再次通空气使煤燃烧,煤层温度升高……
(本资料由北京大学化学系严宣申教授提供